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Abstract The formation of nonlinear axisymmetric waves on inviscid irrotational liquid jets in the presence of
radial electric fields is considered. Gravity is neglected but surface tension is considered. Electrohydrodynamic
waves of arbitrary amplitude and wavelength are computed using finite-difference methods. Particular attention is
paid to nonlinear traveling waves. In the first class of problems, an electric field generated by placing the liquid jet
inside a hollow cylindrical electrode held at constant voltage, its axis coinciding with that of the jet, is studied. The jet
is assumed to be a perfect conductor whose free surface is stressed by the electric field acting in the hydrodynamically
passive annulus. In the second class of problems, the annular gas is a perfect conductor that transmits a constant
voltage onto the liquid/gas surface. The liquid axisymmetrically wets a constant-radius cylindrical rod electrode
placed coaxially with respect to the hollow outer electrode, and held at a different constant voltage. The fluid
dynamics and electrostatics need to be addressed simultaneously in the inner region. Axisymmetric interfacial
waves influenced by surface tension and electrical stresses are computed in both cases. The computations are
capable of following highly nonlinear solutions and predict, for certain parameter values, the onset of interface
pinching accompanied with the formation of toroidal bubbles. For given wave amplitudes, the results suggest that,
for the former case, the electric field delays bubble formation and reduces wave steepness, while for the latter case
the electric field promotes bubble formation, all other parameters being equal.
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134 S. Grandison et al.

1 Introduction

We consider a three-dimensional axisymmetric fluid jet which initially has uniform radius and is surrounded by
a second fluid. We assume that the effects of gravity are negligible, a condition which is satisfied when the Bond
number, ρgR2/σ , where ρ is the fluid density, g the acceleration due to gravity, R the undisturbed jet radius and σ
the surface-tension coefficient, is small. This condition can be expected to hold for a thin jet and/or a large surface
tension. An electric field driven by a constant potential difference acts in the radial direction. For nonlinear interfacial
deformations we must solve for the hydrodynamics and the voltage potentials both inside and outside of the jet.
The fluid motion and the electric field are coupled through the Maxwell stresses which modify the hydrodynamic
stresses at the interface; see [1, Chapt. 6]. This constitutes a nonlinear problem which, in general, must be addressed
numerically. We commence our study of the free-boundary problem by considering traveling-wave solutions with
arbitrary amplitude and wavelength. We will consider two particular cases, one where the inner fluid is a perfect
conductor and the outer fluid is a hydrodynamically passive dielectric, and second where the outer fluid is a perfect
conductor and the inner fluid is a hydrodynamically passive dielectric. In the second case a rod electrode placed on
the axis of symmetry is used to drive a radial electric field.

Wave formation on liquid layers in the presence of surface tension has been the subject of numerous investigations.
Crapper [2] studied two-dimensional capillary waves in deep water and found a class of exact traveling-wave
solutions for which the interface can be a single or multi-valued function. When gravity is also present, exact
solutions are not possible. Gravity–capillary waves in irrotational flows have been computed numerically by a
number of authors including Schwartz and Vanden-Broeck [3], Chen and Saffman [4], Hogan [5], Hunter and
Vanden-Broeck [6] and Grandison and Vanden-Broeck [7].

Vanden-Broeck et al. [8] formulated a finite-difference scheme for calculating the location of the free surface
of an axisymmetric jet. They calculated fully nonlinear solutions and demonstrated that there is a two-parameter
family of solutions for axisymmetric jets. They also presented results which suggest that the waves ultimately reach
a limiting configuration with a trapped bubble at the troughs, although they were unable to compute these limiting
solutions. Subsequently Osborne and Forbes [9] presented a boundary-integral formulation and produced equivalent
results, stating, however, that their scheme was more efficient than that of [8]. In this work we present a formulation
that is an extension of the techniques used in [8].

There are a number of different applications that motivate this study. Examples include coating and cooling,
where liquid films are used to enhance mass or heat transfer. Liquid jets and fluid-sheet problems have applications
in printing, particle sorting, fuel injection and fibre formation. There are other applications such as film flows,
the use of electric fields to modify stability properties of flows and using electric fields in fluid management of
microfluidic devices.

There have been many studies on the stability of liquid jets in the presence of electric fields. Burcham and
Saville [10] and Ramos et al. [11] show experimentally that axial electric fields tend to stabilize capillary-driven
instabilities and enable longer stable bridges to emerge. In the case of inviscid liquids and axial electric fields,
the reader is referred to the liquid-bridge boundary-integral computations reported in [12] and references therein.
Linear oscillations in such regimes have been studied theoretically by Pelekasis et al. [13]. It was shown that the
axial electric field stabilizes capillary instability, thus allowing longer bridges to maintain their integrity rather
than evolve to pinching and drop formation. When radial electric fields act, the modification of the pressure due
to the Maxwell stresses is different and the jet can be stabilized or destabilized, depending on the geometry. The
classical linear problem has been solved by Basset [14], Schneider et al. [15], Neukermans [16] and more recently
by Artana et al. [17,18] for absolute/convective studies. A boundary-element time-dependent computation of a
perfectly conducting inviscid liquid jet in a coaxial electrode has been carried out by Setiawan and Heister [19];
they compute jet configurations that are driven to pinching in the regime where the electric field enhances the
instability. The present study is also in the nonlinear regime but we compute traveling waves of arbitrary amplitude
and wavelength.

The full two-dimensional problem involving an electric field has been studied by Papageorgiou and
Vanden-Broeck [20,21]. In these papers the authors made no approximations for competing length scales; however,
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Axisymmetric waves in electrohydrodynamic flows 135

they neglected the motion of the second bounded fluid. Grandison et al. [22] extended these results to two dimen-
sions by taking into account the motion of the second fluid. In this paper we will extend the results of [20–22] by
calculating fully nonlinear three-dimensional axisymmetric flows taking into account capillary forces.

The paper is organized as follows. Section 2 describes the governing equations and gives the exact dimensionless
problem for both cases studied. Section 3 presents linearized dispersion relations, again for both cases. Section 4
describes the numerical procedure and in Sect. 5 results are shown for the fully nonlinear scheme along with a
comparison between the linear and nonlinear computations. We conclude the paper in Sect. 6.

2 Formulation

In this section we formulate the mathematical models to be addressed for the two cases of a perfectly conducting
fluid surrounded by a dielectric gas, and a perfectly conducting annulus with a hollow dielectric core. These models
form the basis for the analysis and computations that follow.

2.1 Case 1: Perfectly conducting inner fluid surrounded by a passive dielectric

We consider periodic axisymmetric waves of wavelength λ. The whole flow, which we assume to be stationary with
respect to the ground frame, can be decomposed into two separate basic flows. The first one is a uniform cylindrical
jet propagating to the right at a constant velocity c. The second flow is a wave riding on the jet and moving to the
left with a constant phase velocity c such that the whole flow is stationary (see Figs. 1 and 2). The labels A, B,
C and D are used to relate the physical plane to the numerical plane described in Sect. 4 and illustrated in Fig. 3.
Here A denotes the position of a peak, B the position of a trough and D the position of the outer electrode. The line
r = r0 denotes the position of the solid bottom, which in case 1 will be taken to be r = 0.

The fluid is assumed to be inviscid, incompressible; the flow is irrotational and the inner fluid is considered to be
a perfect conductor so that the total electric field inside the fluid is zero. Hence, the electric potential throughout the
inner fluid is constant (for simplicity taken to be zero) and the interface forms an equipotential surface. A hollow
cylindrical electrode having a constant potential V0, concentric with the flow axis and of radius H , is placed around
the whole flow region to provide an electric field.

We introduce cylindrical coordinates r , θ , z. The flow is axisymmetric about the z-axis so that all the variables are
independent of θ . We denote by r = η(z) the equation of the free surface. We also introduce the velocity potential
φ(r, z), the electric potential V (r, z) and the Stokes stream function ψ(r, z). We choose z = 0 at a wave crest and
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Fig. 1 Diagram showing a typical configuration where the inner
fluid is a perfect conductor
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Fig. 2 Diagram showing a typical configuration where the outer
fluid is a perfect conductor
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136 S. Grandison et al.

also φ = 0 for 0 < r < η at a wave crest. Also ψ = 0 along the z-axis. We denote by Q the constant value of ψ
on the free surface. We choose φ = λc/2 at z = λ/2 for all r where c is the speed of the traveling waves.

The functions φ and V satisfy Laplace’s equation in cylindrical coordinates,

∂2φ

∂r2 + 1

r

∂φ

∂r
+ ∂2φ

∂z2 = 0, 0 < r < η(z), (1)

∂2V

∂r2 + 1

r

∂V

∂r
+ ∂2V

∂z2 = 0, η(z) < r < H, (2)

and the kinematic and dynamic boundary conditions on the free surface which are

φr = φzηz, on r = η(z), (3)

and
1

2
(φ2

r + φ2
z )− σ

ρ
K − Pe

ρ
= B0, on r = η(z). (4)

Here, K is the curvature of the free surface

K = ηzz

(1 + η2
z )

3/2 − 1

(1 + η2
z )

1/2

1

η
, (5)

σ is the surface-tension coefficient assumed to be constant, ρ is the fluid density and B0 is the Bernoulli constant.
The term Pe is the pressure contribution due to the Maxwell stresses induced by the electric field at the interface
and is given by

Pe = ε

2
E2

n , (6)

where ε is the dielectric permittivity of the outer fluid and En denotes the normal component of the electric field at
the interface.

Now, the electric boundary condition at the interface requires continuity of the tangential components of the
electric field. Since the electric field inside a perfect conductor must vanish, it follows that the tangential electric
field at the interface must also vanish. The interface then is an equipotential surface and consequently we obtain

E = −(∇V · n)n, (7)

at the interface, where n is the outward unit normal directed from the inner towards the outer fluid. We can rewrite
the former expression in terms of V and the angle of steepness of the interface, α say, as

En = ∂V

∂z
sin α − ∂V

∂r
cosα, (8)

where

tan α = ηz . (9)

Thus, Bernoulli’s equation becomes

1

2
(φ2

r + φ2
z )− σ

ρ
K − ε

2ρ

[
∂V

∂z
sin α − ∂V

∂r
cosα

]2

= B0 on r = η(z). (10)

The constant B0 can be found by substituting in (10) the exact solution for a uniform jet η = R, V = V0 log(r/R)/
log(H/R) (see (25) below) and φ = cz. The result is

B0 = 1

2
c2 + σ

ρR
− ε

2ρ

V 2
0

(R log(H/R))2
. (11)

It is useful to define the amplitude of the wave, s, by

s = η(0)− η(λ/2)

λ
, (12)
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where λ is the wavelength of periodic interfacial waves. This amplitude, s, is used later in our numerical scheme
as a parameter. This allows us to define the wave amplitude for which we seek solutions in our fully nonlinear
numerical scheme and is particularly important when seeking pinched configurations. We note that the definition
of the amplitude (12) is similar to that of the steepness used in two-dimensional wave computations.

Finally we non-dimensionalize our equations by choosing λ as the unit of length, c as the unit velocity and V0 as
the unit of voltage (with this choice we have V = 1 on the surface of the hollow electrode). This choice provides
unit wavelength but other lengths, such as the radius of the hollow conductor, for example, are scaled accordingly
also; to avoid the introduction of additional variables, we will use the same nomenclature as in the dimensional
problem, where it is understood that variables are now dimensionless. For example, it should be clear that r → r/λ,
z → z/λ, H → H/λ, etc. are dimensionless. This scheme is also used in Sect. 2.2 below, as well as in the remainder
of the study. Equations (1)–(2) read the same in dimensionless variables and so does the kinematic condition (3),
as well as the expression for the curvature (5).

In terms of the dimensionless variables, the Bernoulli equation (10) becomes

1

2
(φ2

r + φ2
z )− γ K − Eb

2

[
∂V

∂z
sin α − ∂V

∂r
cosα

]2

= B, on r = η(z), (13)

and

γ = σ

ρλc2 , Eb = εV 2
0

ρc2λ2 , B = B0

c2 . (14)

The dimensionless parameters γ and Eb represent the ratios of capillary to inertial pressures, and electrical to
inertial pressures, respectively (they can be termed inverse Weber and electrical Weber numbers, respectively). This
concludes the general formulation of the first problem. For given values of the parameters s, H and Eb we seek γ ,
B and the functions η(z), φ(r, z) and V (r, z).

2.2 Case 2: Dielectric inner fluid surrounded by a perfectly conducting passive gas

In this case the incompressible inner medium is a dielectric fluid and is bounded by a perfectly conducting hydro-
dynamically passive medium, e.g., a gas. The electric field inside the inner liquid region is generated by placing
a wire electrode of radius r0 > 0 on the axis and connecting it to a constant electric potential source V0. Since
the outer gas medium is a perfect conductor, the electric potential there is a constant which is chosen to be zero.
Consequently, both the electric and velocity potentials must be found in the inner region occupied by the dielectric
liquid. This is in contrast to case 1 where the potentials φ and V must be found inside and outside the interface,
respectively.

In what follows, we summarize the basic equations and boundary conditions where non-dimensionalizations
have been carried out as explained in Sect. 2.1 above (note that r0 appearing below is used for the dimensionless
quantity r0/λ). The velocity potential is a harmonic function satisfying

∂2φ

∂r2 + 1

r

∂φ

∂r
+ ∂2φ

∂z2 = 0, r0 < r < η(z). (15)

The dynamic boundary condition on the free surface becomes,

1

2
(φ2

r + φ2
z )− γ K + Eb

2

[
∂V

∂z
sin α − ∂V

∂r
cosα

]2

= C, on r = η(z), (16)

where

C = C0/c
2, C0 = 1

2
c2 + σ

ρR
− ε

2ρ

V 2
0

(R log(r0/R))2
, (17)

while the kinematic condition reads

φr = φzηz on r = η(z). (18)
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Note the change in sign of the electric pressure term in (16) compared to case 1. This is due to the non-vanishing
field in the fluid for case 2 in contrast to case 1. An extra condition in this case is that there is no flow normal to the
axial electrode, whence

φr = 0 on r = r0. (19)

The electric potential is also a harmonic function and satisfies

∂2V

∂r2 + 1

r

∂V

∂r
+ ∂2V

∂z2 = 0, r0 < r < η(z), (20)

along with the boundary conditions,

V (r0, z) = 1, V (η(z), z) = 0. (21)

Note that, since viscosity is absent in our work, the no-slip condition is not relevant.
This concludes the formulation for case 2 and, as with case 1, we seek values for the unknowns γ , C and the

functions η(z), φ(r, z) and V (r, z) for the parameters s, Q, r0 and Eb.
In the next two sections we calculate the position of the free surface for both case 1 and case 2 subject to the

boundary values ψ(r = r0) = 0, ψ(r = η) = Q, φ(z = 0) = 0, φ(z = 1/2) = 1/2.

3 Linear theory

In this section we present a linear theory and derive dispersion relations for each case formulated in Sect. 2 above.
We carry out the analysis for the given formulation in order to obtain small-amplitude results that can be compared
with the fully nonlinear calculations of Sect. 4.

3.1 Case 1: Perfectly conducting inner fluid surrounded by a passive dielectric

We linearize the dimensionless governing equations and boundary conditions about the exact solution of a uniform
cylindrical jet of radius R, writing

η(z) = R + η̃(z), (22)

where here and in what follows tilde quantities are infinitesimally small. Neglecting higher-order terms we obtain
the curvature of the perturbed free surface as

K = η̃zz + η̃

R2 − 1

R
. (23)

It also follows that the steepness angle α is sufficiently small so that

sin α = η̃z, cosα = 1. (24)

The velocity and electric potentials are perturbed as follows

φ(r, z) = z + φ̃(r, z), V (r, z) = 1

log(H/R)
log(

r

R
)+ Ṽ (r, z). (25)

The linearized kinematic and dynamic boundary conditions become

φ̃r = η̃z, on r = R (26)

φ̃z − γ

[
η̃zz + η̃

R2

]
− Eb f1Ṽr = 0, on r = R (27)

where

f1 = 1

R log(H/R)
. (28)

123



Axisymmetric waves in electrohydrodynamic flows 139

The function Ṽ (r, z) satisfies the following system

∂2Ṽ

∂r2 + 1

r

∂ Ṽ

∂r
+ ∂2Ṽ

∂z2 = 0, R < r < H, (29)

Ṽ (R, z) = − f1 η̃(z), (30)

Ṽ (H, z) = 0, (31)

and thus the solution has the form

Ṽ (r, z) = A

[
I0(kr)− I0(k H)

K0(k H)
K0(kr)

]
cos(kz), (32)

where A is an unknown constant, I0 and K0 are the modified Bessel functions of the first and second kind,
respectively, and k is the dimensionless wavenumber and has the value 2π due to our non-dimensionalization with
respect to the wavelength.

The perturbation velocity potential φ̃ is a harmonic function bounded at r = 0 and thus we seek a solution of
the form

φ̃(r, z) = DI0(kr) sin(kz), (33)

where D is an unknown constant. We use (26) and (30) to obtain an expression for η̃ and to find D in terms of A.
We then substitute the solutions (32)–(33) in the Bernoulli equation (27) to obtain the following dispersion relation
in terms of γ ,

γ = k2 R2
[
I0(k R)+ Eb f 2

1 I ′
0(k R)S

]
k(k2 R2 − 1)I ′

0(k R)
, (34)

where

S = I ′
0(k R)K0(k H)− I0(k H)K ′

0(k R)

I0(k R)K0(k H)− I0(k H)K0(k R)
. (35)

We note that in the case where the electric-field term tends to zero (Eb → 0), we recover the dispersion relation
of Vanden-Broeck et al. [8]. The result (34) is used later in comparisons with the arbitrary-amplitude computations.

3.2 Case 2: Inner fluid is dielectric and the outer fluid is a conductive gas

In this case, the electric potential V (r, z) at each point r0 < r < η, |z| < ∞, is a harmonic function which vanishes
at the perturbed interface r = R + η̃(z) and assumes the value V = 1 at r = r0; thus it has the form

V (r, z) = 1

log(r0/R)
log(

r

R
)+ Ṽ (r, z). (36)

The perturbation electric potential Ṽ (r, z) is also harmonic, vanishes at r = r0, and at the unperturbed interface
r = R assumes the value

Ṽ (R, z) = − 1

R log(r0/R)
η̃(z). (37)

This follows by linearization of boundary condition (8).
By applying the above boundary conditions, we obtain the solution

Ṽ (r, z) = [A1 K0(kr)+ B1 I0(kr)] cos(kz), (38)

where

A1 = − F f2 I0(kr0)

I0(kr0)K0(k R)− I0(k R)K0(kr0)
, B1 = F f2 K0(kr0)

I0(kr0)K0(k R)− I0(k R)K0(kr0)
, (39)
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and F is an unknown constant, while

f2 = − 1

R log(r0/R)
. (40)

The perturbation velocity potential φ̃ satisfies

∂2φ̃

∂r2 + 1

r

∂φ̃

∂r
+ ∂2φ̃

∂z2 = 0, r0 < r < η(z), (41)

φ̃r (r0, z) = 0, (42)

φ̃r (R, z) = η̃z, (43)

where the last condition is the result of linearization of the kinematic condition (3). The solution of the above
system is

φ̃(r, z) = [A2 K0(kr)+ B2 I0(kr)] sin(kz), (44)

where

A2 = − F I ′
0(kr0)

I ′
0(kr0)K ′

0(k R)− I ′
0(k R)K ′

0(kr0)
, (45)

B2 = F K ′
0(kr0)

I ′
0(kr0)K ′

0(k R)− I ′
0(k R)K ′

0(kr0)
. (46)

The linearized Bernoulli equation on the unperturbed interface has the same form as in case 1. Thus, using the
solutions found above gives the following dispersion relation for case 2

γ = k2 R2

k(k2 R2 − 1)

[
I0(k R)K ′

0(kr0)− I ′
0(kr0)K0(k R)

I ′
0(k R)K ′

0(kr0)− I ′
0(kr0)K ′

0(k R)
+ Eb f 2

2
I ′
0(k R)K0(kr0)− I0(kr0)K0(k R)

I0(kr0)K0(k R)− I0(k R)K0(kr0)

]
. (47)

4 Numerical scheme

We will now describe the numerical procedure used to solve cases 1 and 2. In both cases we take the velocity
potential, φ, and the stream function, ψ , as independent variables (see Fig. 3 for a schematic of the computational
domain of case 1). In case 1, a second domain is included above and in contact with the (φ,ψ)-plane, where Laplace’s
equation will be solved for the electric potential. The physical domain is mapped as follows: the physical region
0 < z < 1/2 maps to 0 < φ < 1/2 in the lower grid and to 0 < ω < ωmax in the upper grid where ωmax is found
as part of the solution. The physical range 0 < r < η(z) maps to 0 < ψ < Q and η(z) < r < H to 0 < V < V0.
In case 2 there exists just one computational domain, the φ − ψ domain of case 1, and all unknowns are found on
this single grid; the derivation of the equations used to solve this scheme are discussed in Sect. 4.2.

Following Vanden-Broeck et al. [8] we write the Laplace equation for the fluid dynamics and the corresponding
Bernoulli equation in terms of r and its partial derivatives. From [23] we obtain the identities
∂r

∂φ
= − 1

J

∂ψ

∂z
,

∂r

∂ψ
= 1

J

∂φ

∂z
, (48)

∂z

∂φ
= 1

J

∂ψ

∂r
,

∂z

∂ψ
= − 1

J

∂φ

∂r
, (49)

where J is the Jacobian of the transformation, namely

J = ∂φ

∂z

∂ψ

∂r
− ∂φ

∂r

∂ψ

∂z
. (50)

which yields

r3 ∂
2r

∂ψ2 + r
∂2r

∂φ2 + r2
(
∂r

∂ψ

)2

−
(
∂r

∂φ

)2

= 0, (51)
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1

2

[(
∂r

∂φ

)2

+ r2
(
∂r

∂ψ

)2
]−1

− γ K − Eb

2

[
∂V

∂z
sin α − ∂V

∂r
cosα

]2

= B, (52)

where

K =

[
r ∂r
∂ψ

∂2r
∂φ

−
(
∂r
∂φ

)2
∂r
∂ψ

− r ∂r
∂φ

∂2r
∂φ∂ψ

]
[(

∂r
∂φ

)2 + r2
(
∂r
∂ψ

)2
]3/2 −

∣∣∣ ∂r
∂ψ

∣∣∣[(
∂r
∂φ

)2 + r2
(
∂r
∂ψ

)2
]1/2 , (53)

with the boundary conditions

r = r0 on ψ = 0, 0 < φ < 1/2, (54)

∂r

∂φ
= 0 on r0 < ψ < Q, φ < {0, 1/2}. (55)

For case 1 we set r0 = 0. In order to concentrate mesh points about the region where φ is most rapidly varying, we
introduce the variable t by the transformation

ψ = t2, (56)

and using the chain rule we obtain

∂

∂ψ
= 1

2t

∂

∂t
,

∂2

∂ψ2 = − 1

4t3

∂

∂t
+ 1

4t2

∂2

∂t2 . (57)

We discretize the fluid domain by defining the mesh points

φI = I − 1

2(M − 1)
, I = 1, . . . ,M, (58)

tJ = Q1/2 J − 1

N − 1
, J = 1, . . . , N . (59)

For both case 1 and case 2 the governing equations are applied throughout the domain, including at the boundaries
φ = {0, 1/2}. We evaluate the equations at these boundaries by taking advantage of the wave symmetry at these
points to calculate our central finite-difference formulae.

This concludes the portion of the numerical scheme that is common to both cases being investigated. We proceed
by outlining the details specific to each case.

4.1 Case 1

For case 1, where the lower fluid is a perfect conductor, we wish to solve Laplace’s equation for the incompressible
fluid in the lower (φ–ψ)-plane and Laplace’s equation for the electric field in the upper (ω–V )-plane. The function
ω is the conjugate harmonic of the electric potential, V . Therefore ω and V satisfy the Cauchy–Riemann equations
ωx = Vy and ωy = −Vx . The computational domain is as indicated in Fig. 3.

First, we obtain an expression similar to Eq. (51) for the electric field in terms of our unknowns r . A fuller
discussion on the derivation of such an expression is presented for case 2 in Sect. 4.2 and here we just present the
final form of the Laplacian, obtained after some algebra,

r3 ∂
2r

∂ω2 − r
∂2r

∂V 2 + r2
(
∂r

∂ω

)2

+
(
∂r

∂V

)2

= 0. (60)

In Sect. 4 we described the discretisation used for the lower domain of the problem (the φ–ψ-plane). Here in
case 1, since the upper fluid is a dielectric, we are required to solve for the electric potential, V , in the upper domain
and hence introduce a second discretization for the upper region.

ωi = i − 1

2(M − 1)
, i = 1, . . . ,M, (61)
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Vj = V0
j − 1

P − 1
, j = 1, . . . , Q1. (62)

These two grids are coupled at the interface through the dynamic boundary condition.
We now have two instances of Laplace’s equation (51) and (60), in terms of the unknowns r , over two different

sets of independent variables, φ–ψ and ω–V . We satisfy (51) at the mesh points I = 1, . . . ,M , J = 2, . . . , N − 1
and (60) at the mesh points on the second grid i = 1, . . . ,M , j = 2, . . . , Q1 −1. An extra M equations are obtained
by satisfying (52) at I = 1, . . . ,M , J = N . At grid points all partial derivatives are calculated using two-point
finite-difference formulae for first derivatives and three-point finite-difference formulae for second derivatives. For
example

∂r

∂ω
≈ ri+1, j − ri−1, j

2�ω
∂2r

∂ω2 ≈ ri+1, j − 2ri, j + ri−1, j

(�ω)2

A final set of three equations is obtained from

r1,N − rM,N = s, (63)

∫ 1/2

0
r
∂r

∂ψ
dφ − 1

2
= 0, (64)

∫ 1/2

0
r
∂r

∂V
dω − 1

2
= 0. (65)

Equation (63) fixes the amplitude and (64) and (65) fix the wavelength in both the lower and upper regions,
respectively. The integrals in (64) and (65) are evaluated by means of the trapezoidal rule.

We calculate the z-coordinates of both the upper and lower grids using the Cauchy–Riemann equations to obtain
expressions for ωz in the upper domain and φz in the lower domain. This allows us to compute the quantities r at
i = 1, . . . ,M , j = 1 in the upper region 2 by linear interpolation of the points r at I = 1, . . . ,M , J = N in the
lower region 1. This provides us with M(N + Q1 − 3)+ 3 equations. We obtain M(N + Q1 − 3)+ 3 unknowns
from the M(N + Q1 − 3) values of r plus γ , B and ωmax. The system of equations was solved by use of a modified
Newton iteration scheme. Typical numbers of mesh points used were M = 20, N = Q1 = 35 and the mesh was
refined further in order to demonstrate that all results presented were independent of the number of mesh points to
graphical accuracy.

4.2 Case 2

We begin by writing Laplace’s equation for the electric potential V ,

∂2V

∂r2 + 1

r

∂V

∂r
+ ∂2V

∂z2 = 0, (66)

in terms of r and its partial derivatives with respect to the independent variables φ and ψ .
Using the chain rule we can write the Jacobian, J as

J =
[

r

(
∂r

∂ψ

)2

+ 1

r

(
∂r

∂φ

)2
]−1

, (67)

and its partial derivatives as

Jr =
[(

∂r

∂φ

)2

−
(
∂r

∂ψ

)2

r2

] [(
∂r

∂φ

)2

+
(
∂r

∂ψ

)2

r2

]−2

, (68)
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Jz = −
2r

(
r2 ∂r
∂ψ

(
∂r
∂ψ

)
z
+ ∂r

∂φ

(
∂r
∂φ

)
z

)
[

r2
(
∂r
∂ψ

)2 +
(
∂r
∂φ

)2
]2 . (69)

The partial derivatives of V become, then,
∂V

∂r
= J

r

∂r

∂φ

∂V

∂φ
+ Jr

∂r

∂ψ

∂V

∂ψ
, (70)

∂2V

∂r2 =
(
∂φ

∂r

)2
∂2V

∂φ2 + ∂V

∂φ

∂2φ

∂r2 +
(
∂ψ

∂r

)2
∂2V

∂ψ2 + ∂V

∂ψ

∂2ψ

∂r2 , (71)

where(
∂φ

∂r

)2

=
(

J

r

∂r

∂φ

)2

, (72)

∂2φ

∂r2 = ∂ J

∂r

1

r

∂r

∂φ
− J

r2

∂r

∂φ
+ J

r

∂

∂r

(
∂r

∂ψ

)
, (73)

∂2ψ

∂r2 = ∂ J

∂r
r
∂r

∂ψ
+ J

∂r

∂ψ
+ Jr

∂

∂r

(
∂r

∂ψ

)
, (74)

and finally

∂2V

∂z2 =
(
∂φ

∂z

)2
∂2V

∂φ2 + ∂V

∂φ

∂2φ

∂z2 +
(
∂ψ

∂z

)2
∂2V

∂ψ2 + ∂V

∂ψ

∂2ψ

∂z2 , (75)

where(
∂φ

∂z

)2

=
(

J
∂r

∂ψ

)2

, (76)

∂2φ

∂z2 = ∂ J

∂z

∂r

∂ψ
+ J

∂2r

∂φ∂z
, (77)

(
∂ψ

∂z

)2

=
(

J
∂r

∂φ

)2

, (78)

∂2ψ

∂z2 = ∂ J

∂z

∂r

∂φ
+ J

∂2r

∂φ∂z
. (79)

This allows us to write Laplace’s equation for V entirely in terms of the independent variables φ and ψ . For this
case we seek our unknown quantities V and r on this same grid. We satisfy (51) and (66) (the latter transformed to
the φ–ψ plane as described above) at the mesh points I = 1, . . . ,M , J = 2, . . . , N − 1. An extra 2M equations
are obtained by satisfying r = r0 at I = 1, . . . ,M , J = 1 and (52) at I = 1, . . . ,M , J = N . Two additional
equations are obtained from

r1,1 − rN ,1 = s, (80)∫ 1/2

0
r
∂r

∂ψ
dφ − 1

2
= 0. (81)

This gives 2M N + 2(1 − M) unknowns consisting of the functions r and V at 2(M − 2)N meshpoints with γ
and B providing an extra two unknowns. In order to solve for these unknowns we obtain M equations from the
dynamic boundary condition and M equations by fixing the radius of the inner electrode; a further 2M(N − 2)
equations are obtained by solving Laplace’s equation for both the velocity and electric potentials in terms of our
unknowns and finally two further equations are used to fix the amplitude and the wavelength. This gives a system
of 2M N + 2(1 − M) equations in 2M N + 2(1 − M) unknowns. The derivatives with respect to φ and ψ are found
by two-point finite-difference formulae and the system is solved by a modified Newton iteration scheme.
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Fig. 3 Schematic of the computational domains in case 1. The
lower region is theφ–ψ-plane where the fluid dynamics is solved.
The upper region is in contact as shown and represents the
ω–V -plane, where ω is conjugate harmonic to V
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Fig. 4 Free-surface profile in the absence of an electric field,
Eb = 0; Q = 1/2π2, s = 0.55, M = 35, N = 50. The wave
contains a trapped bubble at its trough

5 Discussion of results

As a check of the numerical scheme we initially set the electrical parameter Eb = 0 in case 1 in order to recover
the solutions of Vanden-Broeck et al. [8]. For the parameters used in [8] we find that our numerical scheme is in
close agreement with their results. Furthermore, due to increases in computing power (and possibly due to more
accurate interpolation formulae) we are able to compute solutions for larger values of the amplitude s, than those
in [8]. Figure 4 shows a limiting configuration where the free surface contains a trapped bubble at the trough. We
note that, since this flow is axisymmetric, the bubble is toroidal in shape.

5.1 Case 1: results

In this physical situation we have a perfectly conducting inner cylindrical fluid surrounded by a hydrodynamically
passive dielectric. Figure 5 shows typical results of two free-surface profiles for two different values of Eb =
10−4, 0.5. The amplitude is fixed at s = 0.6 in both cases and the radius of the outer electrode is H = 10. We note
that, in the absence of an electric field, an amplitude of s = 0.55 produces a trapped bubble as already shown by the
results of Fig. 4. A very small value Eb = 10−4, however, shows that a bubble does not form, even at a larger value
of the amplitude (dashed line curve). Increasing Eb further to a value of 0.5 indicates a complete disappearance of
the bubble (the interfacial shape is now single-valued) associated with a relative reduction in steepness.
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Fig. 5 Case 1. Free-surface profiles for Q = 1/2π2, s = 0.6,
H = 10. The dashed curve is the solution for Eb = 10−4, and
the solid one for Eb = 0.5
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Fig. 6 Case 1. Computed values of the dimensionless surface-
tension parameter γ versus amplitude for Q = 1/2π2, H = 10.
The dashed curve represents Eb = 10−6, and the solid one Eb =
0.5. The horizontal lines represent the corresponding linearized
analytic solutions as given by (34)

The variation of the dimensionless surface-tension coefficient γ (see (14)) with wave amplitude is given in Fig. 6
for two different values of Eb = 10−6, 0.5. The superimposed horizontal lines correspond to the linear analytic
solutions given by the formula (34). Several conclusions are possible from these results. First, an increase in Eb

shifts the curve upwards to larger values of γ ; this can be deduced analytically in the linear regime from Eq. (34),
but the present computations indicate that a monotonic increase of γ with Eb persists at large amplitudes also. The
agreement between the full computations and linear theory (the horizontal lines) shows, once again, the accuracy
of the present calculations.

5.2 Case 2: results

We now discuss the results for case 2, in which the upper fluid is a perfectly conducting gas and the lower fluid is a
dielectric. The dimensionless radius of the inner electrode is set to r0 = 0.01 in all the results that follow. Figure 7
shows the free-surface profiles for Eb = 0 and Eb = 0.05. Note that the solution in the absence of an electric field
is different from the class of solutions computed in [8] due to the presence of the cylindrical rod along the axis of
symmetry. This solution is depicted by the dashed curve of Fig. 7. When the electric field is introduced (solid curve),
the surface profile becomes more nonlinear and steepens, forming a trapped bubble at its trough. This behavior is
qualitatively different from the effect of increasing Eb in case 1 when the inner fluid is a perfect conductor, where
we observe a decrease in the wave steepness as Eb increases (see Fig. 5).

Additional nonlinear results are provided in Fig. 8 which depict the variation of γ with wave amplitude at three
increasing values of Eb = 1, 5 and 10. The analytical linear results given by the dispersion relation (47) are
superimposed by straight horizontal lines. We observe, as before, that an increase in Eb at a given amplitude s,
results in an increase in γ ; this is seen analytically for linear waves from Eq. (47). The variation of γ with amplitude
(for a fixed Eb) is not monotonically increasing in case 2 as opposed to case 1, at least for s ≤ 0.5; see Fig. 6. In
fact, there appears to be a maximum of γ at a wave amplitude of approximately 0.43 (the values of s at the maxima
for the three different values of Eb are close but unequal). At small amplitudes the numerical scheme shows good
agreement with the linear solutions. It can also be seen from Fig. 8 that the range of wave amplitudes where good
agreement with linear theory holds, decreases with increasing Eb. For example, linear theory is satisfactory for
amplitudes up to about s = 0.3 for Eb = 1, whereas the corresponding numbers for Eb = 5 and 10 are s ≈ 0.1
and s =≈ 0.05, respectively.
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Fig. 7 Case 2. Free-surface profiles for Q = 1/2π2, wavelength
λ = 1, amplitude s = 0.55, r0 = 0.01. The dashed line repre-
sents Eb = 0 (not pinched), the solid line represents Eb = 0.05
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Fig. 9 Computed values of
the amplitude required to
obtain pinching as a
function of Eb for case 2
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As the electric field, Eb, is increased the amplitude required to obtain a pinched configuration decreases. Figure 9
shows that the pinching amplitude is a monotonically decreasing function of Eb over the range shown. For the
opposite configuration, i.e., where the inner fluid is a perfect conductor and the outer fluid is a dielectric, the
interaction of the electric field acts to oppose the formation of a pinch as seen in Fig. 5. Due to the computational
complexity of case 1 (two coupled regions), we did not calculate the branch of limiting pinching solutions as was
done in Fig. 9 for case 2. As remarked above, we expect an increase of the limiting amplitude with increasing Eb.

6 Conclusions

In this paper we have developed a numerical scheme using finite differences based on the work of Vanden-Broeck
et al. [8] and extended their results to take into account the effect of electric fields on the flow.

Two specific electrohydrodynamic problems have been studied, both three-dimensional axisymmetric and driven
by radial electric fields. The first (case 1) is concerned with nonlinear traveling waves at the surface of a perfectly
conducting liquid jet held at zero potential and surrounded by a coaxial cylindrical electrode held at a constant
non-zero potential. The fluid dynamics and the electrostatics must be solved in two different regions. Numerical
calculations are presented with particular emphasis placed on limiting waves which overturn to form toroidal bubbles
of air inside the fluid. We find that the presence of the field tends to delay the pinching and bubble formation for
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waves of equal amplitudes; for example, as seen in Fig. 5 an increase of Eb from 10−4 to 0.5 decreases the wave
steepness and removes the incipient bubble.

The second problem has a perfectly conducting gas in the annular region surrounding a dielectric fluid which
wets axisymmetrically a constant-radius cylindrical-rod electrode placed on the axis and coaxial with the outer
electrode. The potential of the outer electrode (and hence the fluid/gas interface) is zero while the rod electrode is
kept at a constant non-zero potential. The fluid dynamics and the electrostatics need to be solved in the same region
in this case. The effect of the field is qualitatively different in this case as reported in the results of Fig. 7. The trend
established numerically is that an increase in the electric-field strength (equivalently an increase in Eb) results in
driving equal-amplitude waves to overturning and bubble formation, in direct contrast to the effect of increasing Eb

found in case 1. This can be explained by noting that the variation of the surface-tension parameter γ with wave
amplitude is different in case 2, where we find an initial increase along with attainment of a maximum followed by
a decrease (see Fig. 8 and compare with the analogous one of case 1, Fig. 6). If we slightly increase Eb for a given
value of the amplitude in Figs. 6 and 8, then γ increases. However, an increase of γ along the decreasing portions
of the curves of Fig. 8 (i.e., to the right of the maxima), corresponds to a decrease in amplitude, in contrast to case
1 which provides an increase in amplitude as seen in Fig. 6. Note that the limiting pinching solutions occur at the
largest computed values of the amplitudes in Figs. 6 and 8, and this has guided the discussion of the differences
between the two cases above.

We close with a physical argument using a balance of forces that helps to explain the strongly nonlinear wave
calculations presented here for cases 1 and 2. As the steepness increases and pinching traveling waves form, there
is a competition between capillary forces that tend to increase the wave amplitudes and electric field forces that
can either enhance or decrease the capillary mechanism. As can be seen from the Bernoulli equations (13) and
(16)—see also [12]—the dimensionless pressure jump, �p say, according to the normal-stress balance as the
interface is crossed from the fluid region is given by �pI = (1/R1 + 1/R2) − (1/2)εE2

n for case 1, and by
�pI I = (1/R1 + 1/R2)+ (1/2)εE2

n for case 2, where 1/R1, 1/R2 are the principal radii of curvature. Using this
force balance, we see that in case 1 the electric field, which is present outside the fluid region, acts to decrease the
pressure jump as the interface is crossed from within the fluid in the vicinity of a wave trough; thus, it allows for
smaller amplitude, all other effects being equal. In fact, as Eb increases in case 1, the wave amplitudes according to
this simple argument are expected to decrease, and this is fully in line with the nonlinear calculations. For case 2,
however, the electric field is present in the fluid and is zero outside, which is why the Maxwell stresses act to
increase the local pressure jump across the interface as the latter is crossed from inside. This increase in pressure
allows for larger amplitudes to form and hence an increase in Eb promotes the formation of a pinch as is seen in
our nonlinear computations.
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